
DOI: 10.7763/IPEDR. 2013. V62. 6

Previewing in Visual Programming Environment for Video Effects

Satoru Hirai
1

, Motoshi Tokoshima
1
, Kunio Yamamoto

2
, Hiromi Baba

3
, and Tsukasa Noma

2

1 Department of Creative Informatics, Kyushu Institute of Technology
2 Department of Artificial Intelligence, Kyushu Institute of Technology
3 Department of Information and Computer Science, Kinki University

Abstract. MVEVE is a visual programming environment for creating new visual effects for video images.

This paper discusses previewing issues in MVEVE from two viewpoints: user interface and image

downsizing. From the user interface point of view, we designed the interface for previewing so that users can

debug the visual program efficiently and intuitively. For image downsizing, we designed the functions of

modules for low-resolution images/videos so that users have similar impressions of visual effects as much as

possible even in the downsized videos. Sample frames from original and downsized videos are presented to

illustrate the effects of our approach.

Keywords: Visual Programming, Visual Effects, Video Effects, Preview, MVEVE.

1. Introduction

With the wide use of portable video devices and video hosting services, there is potential demand for

creating new video effects easily, and visual programming is a promising approach to enabling computer-

naive users to create new effects. MVEVE (Modular Visual Environment for Visual Effects) is a novel visual

programming environment for creating new video effects[1]. In MVEVE, users connect input/output ports of

processing modules with each other (Figure 1), and then the programmed video effects are added to source

videos. Typical modules in MVEVE are basic image processing sub-program including bitmap operations

and morphological operations. MVEVE thus supports various visual effects by combining modules

arbitrarily. Users of MVEVE usually do not have full confidence in their arrangements of modules (and their

parameters) in advance, and then need trial-and-error processes before they are satisfied with the results. In

the trial-and-error processes, previewing is a major tool for judging whether the current effects (programs)

accomplish their goals.

This paper discusses previewing in MVEVE from two viewpoints: user interface and image downsizing.

In particular, though still images and videos are often downsized (resized) for speeding-up computations,

saving storage, and showing multiple images simultaneously, how visual effects are represented in

downsized images/videos has seldom been discussed in the literature. In the next section, we first overview

MVEVE, and then previewing problems are discussed in the following section.

Fig. 1: A screenshot of MVEVE visual programming environment.

 Corresponding author. Tel.: +81-948-29-7500; fax: +81-948-29-7601.

 E-mail address: s_hirai@pluto.ai.kyutech.ac.jp.
27

2. MVEVE for Creating New Visual Effects

2.1. System Overview

Our method for creating effects is similar to existing visual programming environments, such as

LabVIEW[2], Simulink[3] and AVS[4], where the order of execution of modules is defined by data flow. A

screenshot of MVEVE is shown in Figure 1. The green boxes on the screen are modules, most of which

execute video processing, and the rests are for video input/output and control structures. Each module has

input ports on its top and/or output ports on its bottom. The color of each port represents its data type.

Features of these data types are described in the next subsection. Each connection from an output port to an

input port represents data flow, where the data type (colors) of the input port should coincide with that of the

output port. As an exception, a GenericType port can be connected with a port of any data type. To create a

visual effect on MVEVE, users put various modules on the window, and then make connections between

ports. To modify an effect, users open its file, add/delete/move the modules and connections, and then save

the edited effect.

MVEVE is superior in ease-of-description to existing visual programming languages such as Cantata[5].

The key to its easiness lies in its high-level data type.

From the viewpoint of programming, users can hardly make motion-dependent visual effects on the

existing visual environments. To mix/transform/blur videos, the program refers to a current frame only,

while to represent motion in videos, the program should refer to adjacent frames. In the existing visual

environments, users do not have a convenient way to refer/represent these adjacent frames, and this is why

motion-dependent visual effects can hardly be programmed in the existing systems.

To enable users to build new effects referring to adjacent frames, we introduce a new high-level data

type called 3D Object List, a sequence of sequences of images. The use of 3D Object Lists is discussed in the

next subsection. Further discussions, references, and comparisons with related work can be found in [1].

2.2. Data Types

MVEVE has several data types including ImageList, 3DObjectList, Value, Text, and Generic, and its

modules have I/O ports of these data types.

Image List. ImageList is a sequence of images, typically an image time series. It is either

RGBImageList, GSImageList, or BMImageList depending on its component image type. (GS and BM stand

for Grayscale and Bitmap, respectively.) In MVEVE, the input and output are usually ImageLists as a

sequence of video images, and most intermediate results are also treated as ImageLists.

3D Object List. To generate visual effects for a single frame, its adjacent frames are often required. In

MVEVE, the sequence of adjacent frames/images is called 3DObject, and 3DObjectList, a sequence of

3DObjects, is also a data type.

Figure 2 illustrates how a 3DObjectList is generated from an ImageList. For example, an object is

tracked and represented as ImageList (Figure 2 Left). To make an afterimage for each frame, its adjacent

frames are combined into a 3DObject, and the combination is performed for every frame/image (Figure 2

Right).

Fig. 2: 3DObjectList and its generation from ImageList

28

The name of 3DObjectList comes from a combination of two dimensions of an image plane and a

dimension of time t. 3DObjectList is either 3DObjectListRGB, 3DObjectListGS, or 3DObjectListBM

depending on its source ImageList.

2.3. Processing Modules

MVEVE has various processing modules and they are classified into several categories. We introduce

what kind of module in main categories, and how they are connected is shown in the next subsection.

Modules in Tracking Category track an object specified by a user. Pixelwise Operation Category covers

logical operations. Morphology Category has morphological operators for creating various effects. Modules

in Data Conversion Category either generates a 3DObjectList from an Image List as shown in Figure 2, or

conversely generates an ImageList from a 3DObjectList. Control Structure Category has two major control

structures: repetition and subroutine/subprogram.

2.4. Combination of Modules

Figure 3 shows some sample effects from the combinations of MVEVE modules.

(a) Afterimages (b) Speedlines (c) Surrounding particles

Fig. 3: Sample effects in MVEVE.

The rest of this subsection discusses how we program an effect of afterimages of object contours (Figure

3(a)). They are represented by drawing the (previous) contours on the opposite side of its motion direction.

To create the effect, our process has three steps: Figure 4(a), (b), and (c).

(a) Process(1) (b) Process(2) (c) Whole process

Fig. 4: Module arrangements for afterimages.

In Figure 4(a), VideoInput module receives an ImageList, and ObjectTracking module tracks a

specified object in the ImageList. In the next For, Dilation and ContourExtraction modules extract multiple

contours with different scales. The contours are accumulated with Memory and PixelwiseSum modules,

and then the ripple shape around the object is generated. Similarly, the object is tracked in Figure 4(b)1.

3DSweep module then makes a 3DObjectList, and Projection module makes a sequence of the track shape.

1 VideoInput and ObjectTracking modules in Figure 4(a) and (b) are identical in MVEVE. They are shown separately only for clarification in Figure

4.
29

In Figure 4(c), PixelwiseProduct module inputs the results from the above two (sub)processes, and then

obtains a sequence of the afterimages. Finally, the obtained sequence is overlayed onto the original image by

PixelwiseOverlay module.

Figure 5 shows a sequence of the result images where a man is running. The faster the man runs, the

more contours appear. Such speed-dependent changes of effects make a video clip lively.

Fig. 5: Result sequence of afterimages.

3. Previewing in MVEVE

This section discusses previewing in MVEVE from two viewpoints: user interface in the first subsection,

and then image downsizing in the second subsection.

3.1. User Interface for Previewing

MVEVE supports three types of preview functions: Movie Preview, Scene Preview, and Low-resolution

Preview. Movie Preview produces the entire video sequence with the current (programmed) video effect at

its original size. Scene Preview translates part of the sequence to focus on the important scene and also to

save the computational cost. Low-resolution Preview also saves the cost by adding the effect to the low-

resolution (downsized) video. They can be chosen by both the buttons on the top of the window and a pull-

down menu (Figure 6).

Fig. 6: Choosing the type of previewing.

One of the features of previewing in MVEVE is to preview any intermediate processing results in the

visual program. By choosing a module where the above-mentioned pull-down menu is invoked, the video

output from the module can be previewed. If the specified module is an intermediate one and its output data

type is, for example, BMImageList, the bitmap image in black-and-white (typically mask image) is shown on

the window. Users can thus see any intermediate results on their visual program and debug the program

efficiently.

While editing/debugging the visual program, users also compare the current results with the previous

results. To improve the efficiency of this work, we decided to manage the previous preview videos in the

form of simple history list. We first tried to manage the previews in association with the history of program

editions. But we avoid it so as not to enforce its complex operations on users.

3.2. Video Effects for Downsized Videos

Videos and (still) images are often downsized in many applications. To estimate the video effects in the

downsized videos, it is important to make the similar impressions as those in the original size. To give the

same impressions, MVEVE adopts some interpretation rules of visual programs for downsized (low-

resolution) videos.

30

In many types of MVEVE modules, simple changes of pixel size are sufficient. For example, if the

vertical and horizontal sizes of a video are halved, the sizes of, e.g., dilation/erosion/blur should also be

halved. Some types of modules, however, need further considerations. For example, particle effects need

three constraints:

(a) The ratio of area occupied by particles is the same in the downsized images.

(b) Impressions of the same granularity of particles are given in the downsized images.

(c) Impressions of the same number of particles are given in the downsized images.

In the above constraints, the constraint (a) can be evaluated exactly, while (b) and (c) depend on

sensitivity. We thus made simple rules for the particles: Let r be a reduction ratio of image in both vertical

and horizontal directions (r < 1). The number of particles are then multiplied by r, and the (average or base)

size of particles by r . This satisfies the above constraint (a). Figure 7 shows sample images with particles

following a tracked person in the original, half, and quarter sizes.

Fig. 7: Following particles in the original size (Left), half size (Middle), and quarter size (Right).

4. Conclusions

This paper discusses previewing issues in MVEVE from two viewpoints: user interface and image

downsizing. From the user interface point of view, we designed the interface for previewing so that users can

debug the visual program efficiently and intuitively. For issues in downsizing video images, we designed the

system so that users have similar impressions of visual effects in the low-resolution images. Considerations

on the relations between the impressions and the image sizes would be important not only in visual

programming environments like MVEVE but also in mobile environments, where computations for visual

effects are performed on low-cost portable devices and/or videos with effects are sent via wireless

LAN/WAN.

5. Acknowledgements

We are grateful to Akihiro Miyamoto at Triart Inc. for his support in developing MVEVE.

6. References

[1] S. Hirai, et al. MVEVE: A Visual Programming Environment for Creating New Visual Effects. Proc. of CGIM

2013. Feb. 2013.

[2] P.A. Blume. LabVIEW Style Book. Prentice Hall, 2007.

[3] J.B. Dabney, and T.L. Harman. Mastering Simulink. Prentice Hall, 2003.

[4] Advanced Visual Systems Inc. Data Visualization Software from Advanced Visual Systems. http://www.avs.com/.

[5] M. Young, D. Argiro, and S. Kubica. Cantata: Visual Programming Environment for the Khoros System.

SIGGRAPH Computer Graphics. 1995, 29(2): 22- 24.

31

