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Data Envelopment Analysis Network Models with Interval Data 

Josef Jablonsky+ 

University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic 

Abstract. Data envelopment analysis (DEA) is a non-parametric method for relative efficiency evaluation 
of decision making units described by multiple inputs and multiple outputs. It is based on solving linear 
programming problems. Since 1978 when basic DEA model was introduced many its modifications were 
formulated. Two or, in more general, multi-stage models with series or parallel structure (network models) 
belong among them. Standard DEA models are based on deterministic inputs and outputs. The paper deals 
with DEA network models under the assumption that inputs and/or outputs are continuous interval variables. 
Under this assumption the efficiency scores of production units are random variables as well. Several 
approaches for description of random efficiency scores were developed for standard DEA models but only 
few for models with network structure. They are mostly based on formulation of linear optimization 
problems. Another methodological approach for DEA models with interval data is simulation. The paper 
compares results given by simulation experiments and by optimization DEA network models with interval 
data. 
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1. Introduction 
Data envelopment analysis (DEA) is a non-parametric technique for evaluation of relative efficiency of 

decision making units described by multiple inputs and outputs. Let us suppose that the set of decision 
making units (DMUs) contains n elements. The DMUs are evaluated by m inputs and r outputs with input 
and output values xij, i = 1, 2,…, m, j = 1,2,…, n and ykj, k = 1, 2,…,r, j = 1, 2,…, n, respectively. The 
efficiency of the DMUq can be expressed as the weighted sum of outputs divided by the weighted sum of 
inputs with weights reflecting the importance of single inputs/outputs. The efficiency score of the DMUq can 
be given by solving the optimization problem (1) which is standard CCR model formulated by Charnes et al. 
in [2].  

Minimize qθ  
Subject to                                                                                                                                                  (1) 
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λj ≥ 0,  j = 1,2,…,n, 
Where λj, j = 1, 2,…, n are weights of DMUs, s−

i, i = 1, 2,…, m, and s+
k, k = 1, 2,…, r  are slack (surplus) 

variables and θq is the efficiency score of the DMUq which expresses necessary reduction of inputs in order 
this unit becomes efficient. If the optimal value of model (1) θ*

q = 1, then the DMUq is CCR efficient and it 
is lying on the CCR efficient frontier, otherwise the unit is not CCR efficient. Model (1) is CCR model with 
input orientation, i.e. this model looks for reduction of inputs in order to reach the efficient frontier. The 
output oriented modification of the presented model is straightforward. The BCC model under variable 
returns to scale assumptions originally presented in [1] extends the formulation (1) by convexity constraint 
∑jλj = 1. Both mentioned DEA models measure efficiency of a transformation of m inputs into r outputs in 
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one stage and under an assumption that all data are deterministic but the production process is often more 
complex and the data may be stochastic. The paper formulates two-stage network model with serial structure 
where outputs of the first stage are inputs of the second stage and offers its solution under assumption that all 
inputs and outputs are interval variables. 

The paper is organized as follows. The next section contains basic formulation of DEA network model 
with interval data and discusses possibility of its solution using optimization and simulation models. 
Section 3 presents results of numerical experiments based on real data set – evaluation of efficiency of bank 
branches. Final part of the paper summarizes presented results and discusses directions for future research. 

2. DEA Network Models with Interval Data 
Model (1) measures the relative efficiency of one-stage transformation of m inputs into r outputs. The 

transformation of inputs into final outputs can be considered as a two- or even several-stage process. The 
inputs of the first stage are transformed into its outputs and all or at least some of these outputs are used as 
inputs of the second stage that produces final outputs. Let us denote the input values of the first stage xij, i = 1, 
2,…, m, j = 1, 2,…, n and the output values of the first stage yij, i = 1, 2,…, r, j = 1, 2,…, n. Supposing that 
all outputs of the first stage are used as inputs of the second stage and that the final output values are zij, 
i = 1, 2,…, p, j = 1, 2,…, n.  Two-stage DEA models are widely analyzed and discussed within professional 
community. Theoretical issues can be found e.g. in [6]. Among numerous case studies can be mentioned 
papers [5] and [7]. Two-stage DEA model under constant returns to scale assumption can be formulated 
according to [3] as follows: 

Minimize qq φθ −  
Subject to  
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λj ≥ 0, μ j ≥ 0,  j = 1,2,…,n, 
Where λj and μj, j = 1, 2,…, n, are weights of the DMUs in the first and second stage, θq and φq are 

efficiency scores of the DMUq in the first and second stage and kqy~ are variables to be determined. The 
DMUq is recognized as efficient by model (2) if the efficiency scores in both stages are θq = 1 and φq = 1 
respectively, and the optimal objective value of the presented model is 0. The inefficient units can be ranked 
relatively by the following geometric average efficiency measure: 

                         eq = (θq / φq)1/2 (3) 

Inputs and outputs in both stages usually reflect past values of the DMUs and the model (2) supposes 
that the inputs and outputs of the units are given as deterministic values. For evaluation and estimation of 
future efficiency of the DMUs it can be useful to consider inputs and outputs as random variables. They can 
be given as interval values or more generally as random variables with defined continuous probabilistic 
distribution. Approaches for dealing with interval data in DEA can be divided into two groups – optimization 
and simulation methods. Optimization approaches are based on solving one or several linear programs and 
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result to an index or indices for each DMU that can be used for their ranking. One of the optimization 
approaches is presented in [4]. It supposes that the corresponding values for inputs and outputs are 
continuous variables with uniform distribution defined over intervals xij ∈ <xL

ij, xU
ij>, ykj ∈ <yL

kj, yU
kj> and zlj 

∈ <zL
lj, zU

lj>. Efficiency scores of the DMUs under the assumption of interval inputs and outputs are random 
variables defined over an interval. The lower bound for efficiency score in both stages is given by taking into 
account the worse inputs and outputs for the evaluated unit DMUq and the best characteristics for all the 
other units and similarly the upper bound is defined by using the best characteristics of the evaluated unit and 
the worse ones for all the other units. The optimization model for deriving the lower bound for efficiency 
score of the unit DMUq in the first stage is as follows: 

Minimize qθ  
Subject to 
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 According to the values of the lower and upper bounds of efficiency scores in each of two stages the 
DMUs can be divided into three subsets E1, E2 and E3: 

E1: DMUs always efficient – this subset contains units that are efficient in any case, i.e. even their inputs 
and outputs are on their worst values and the inputs and outputs of other units are on their best bounds. 

E2: DMUs conditionally efficient by suitable adjusting of inputs and outputs of all or at least some of the 
units (upper bound of their efficiency score is 1). 

E3: DMUs never efficient (upper bound of their efficiency score is lower than 1). 
This approach can lead to quite different results, e.g. a DMU can belong to the set E1 (always efficient) 

in the first stage and to the set E2 or even E3 (never efficient) in the second stage. In order to evaluate the 
efficiency of both stages simultaneously model (2) can be modified according to model (4) - the modified 
optimization model considers interval variables of the inputs of the first stage and final outputs and 
intermediate characteristics are taken into account on their average level. The results of the modified model 
(2) allow dividing the units into three classes as presented above. 

Except optimisation models simple simulation tools can be used to analyse the presented problem even 
under a more general assumptions than interval values of random variables. Simulation approach is more 
time consuming than the optimisation one but it gives much more information that can be useful for a 
detailed analysis of the problem. This approach can be simply described by the following steps: 

 Random generation of all random variables of the model 
 Modified two-stage DEA model (2) is solved with the values generated in the previous step 
 Information from the random trials are processed and evaluated by means of a suitable software tool 

Simulation trials offer much more information about distribution of efficiency scores of particular units 
comparing to above described optimization procedure. Results given by both - optimization and simulation – 
procedure are compared on a simple example in the next section. 

3. Numerical Example 
Applications of DEA models are numerous. Results of the above formulated models will be illustrated 

on an example of 67 selling branches of one of the Czech mobile phone operators. The example takes into 
account two inputs (operational expenses in CZK and the number of business hours per year), two 
intermediate characteristics (the number of transactions of current customers and the number of new 
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customers), and two final outputs (financial contribution of the branch in CZK and the ICCA score 
measuring the customer satisfaction). The data for all 67 branches are available with a certain level of 
uncertainty. That is why the fixed data from 2010 are used for numerical experiments together with modified 
set of data. In this modification we suppose that the data are independent continuous random variables with 
uniform distribution over interval <0.95x, 1,10x>, where x is the original fixed value. Computational 
experiments are divided into two groups. 

 Table 1: Results of efficiency evaluation (two single stages) 

DMU 1st stage 2nd stage Geometric 
average 

Rank 

lower upper lower upper 
1 0.9014 1.0000 0.3382 0.6128 0.6556 9 
2 1.0000 1.0000 1.0000 1.0000 1.0000 1 
3 0.7139 0.9889 0.6986 1.0000 0.7847 4 
4 0.8948 1.0000 0.6082 1.0000 0.8496 2 
5 0.8572 1.0000 0.5228 0.9757 0.8038 3 
6 0.6191 1.0000 0.4905 0.8589 0.6650 8 
7 0.5876 1.0000 0.5133 0.9546 0.6801 7 
8 0.5662 0.8217 0.9951 1.0000 0.6931 6 
9 0.7996 1.0000 0.3609 1.0000 0.7422 5 

10 0.5745 0.9452 0.4094 0.7141 0.5695 10 
(1) Efficiency evaluation of the branches in two separated stages using model (5) and its modifications under 

variable returns to scale assumption. Lower and upper bounds for efficiency scores of the branches in 
both stages are main results of applied models. The branches can be ranked according to several criteria 
in this case – e.g. geometric average of maximum or minimum efficiencies in both stages. The results of 
this approach for a selection of 10 branches are presented in Table 1. According to the results of the first 
stage there is only one unit (DMU2) that is always efficient, 6 units are conditionally efficient and the 
remaining ones are always inefficient. Similar conclusions hold for the second stage – again the unit 
DMU2 is always efficient, other 4 units are conditionally efficient and 5 units are inefficient even they 
work on their best bound. The pre-last column of Table 1 contains geometric average of two values – 
simple average of lower and upper values in each stage. The last column presents ranking of the selected 
units according to the geometric average in the pre-last column. It is really questionable what criterion to 
use for ranking of units when both stages are separated. It is clear that the most efficient unit is the unit 
DMU2 that is always efficient in both stages. Next places in ranking are occupied by units that are 
conditionally efficient at least in one of two stages. 

(2) Evaluation of efficiency using modified model (4), i.e. considering both stages simultaneously. 
Optimization approach leads to lower and upper bounds for efficiency scores as above. Simulation 
approach was realized with uniformly generated data of all units and optimization run with model (4). 
After 50 trials some information about distribution of efficiency scores in both stages and overall 
efficiency are given. 
Table 2 contains information about lower and upper bounds of efficiency scores given by modified 

model (4) - θq and φq values are synthesized by (5). Next three columns present similar information from 50 
simulation trials as described in previous section of the paper – minimum, maximum and average efficiency 
characteristics (5). Last two columns of Table 2 compare rankings of DMUs by the middle of interval given 
by lower and upper bounds from optimization runs on the one side and by average characteristics (5) from 
simulation approach on the other side. It is clear that both rankings are very close each other. Of course 
simulation procedure offers much more information to decision makers than single optimization approach. 
Information about distribution of efficiency scores is not presented here due to a limited space for the paper. 
Comparison of results given by two single models for efficiency evaluation (Table 1) and the two-stage 
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model (Table 2) shows more significant differences in final ranking of DMUs – e.g. DMU9 is on 5th place in 
two single models approach and it is one of the worse DMUs when two-stage model is applied. 

 Table 2: Results of efficiency evaluation (two-stage model) 

DMU Optimization Simulation (50 trials) Rank  
optim 

Rank 
simulation lower upper lower upper avg 

1 0.6138 0.7233 0.6174 0.7212 0.6635 8 7 
2 1.0000 1.0000 1.0000 1.0000 1.0000 1 1 
3 0.6491 0.8865 0.6814 0.8302 0.7507 4 5 
4 0.7873 0.9537 0.8067 0.9487 0.8629 2 2 
5 0.6326 0.8982 0.6908 0.8906 0.7813 5 4 
6 0.5826 0.7564 0.6155 0.6994 0.6514 7 8 
7 0.6295 0.8317 0.6832 0.7646 0.7240 6 6 
8 0.7417 0.8796 0.7683 0.8444 0.8164 3 3 
9 0.4936 0.8246 0.4955 0.8124 0.5865 9 10 

10 0.5803 0.7201 0.5947 0.6770 0.6324 10 9 

4. Conclusions 
Efficiency evaluation of network production systems is a very complex task. The paper is focused on 

a simplest system which is two-stage serial model. Under the assumption of deterministic data there are 
formulated several DEA models for efficiency evaluation. In case of stochastic data one can use optimization 
approach that offer information about the worse and the best efficiencies (under worse and best conditions 
for the evaluated unit) only. The same information can be given by simulation approach but except results 
given by optimization approach many other results can be of an interest for decision makers. Both 
approaches are illustrated on a simple numerical example of a real-world nature. Further research will be 
focused on more complex network systems with serial or parallel structures. 
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