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Abstract. The bivariate copula potentiality for measuring risk dependencies due to occurrence of two 
natural disasters is presented. Some bivariate copula essentials are described. Several copula dependence 
measures (concordance, Kendall’s tau, Spearman’s rho, positively quadrant dependent, tail dependence) are 
considered. The results about the measuring risk dependencies can support the stakeholders to take more 
informed decisions regarding the efficient allocation of the available funding for the improvement of risk 
management with respect to natural disasters. A concept for implementing the bivariate copula models as a 
part of a Web integrated information system for risk management of natural disasters is outlined.   
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1. Introduction  
Today it is recorded an increase in negative severities of natural disasters on the life quality compared to 

previous years [1]. Billions of dollars cost annual losses resulting from floods, hurricanes, earthquakes, 
tornadoes, landslides etc. Unfortunately, natural disasters are impossible to avoid and infrastructure systems 
cannot be made totally invulnerable. The only feasible strategies for risk management and consequences 
reduction can be designed [2, 3].  

For these reasons, the numerous scientific and applied investigations are conducted on separate natural 
disaster and their consequences for the people’s health and property, the environment, cultural and material 
assets. The scientific activities are concerned to the development and application of modern methods and 
tools for analysis and estimation of risk events; development of models for risk control in emergency 
situations; development and maintenance of dedicated databases and information systems. 

It is important to note that mostly the interdependence of natural disasters and their joint impact on 
society and infrastructure are not sufficiently taken into account in scientific study. Therefore it is necessary 
to propound varied mathematical methods for measuring risk dependencies due to natural disasters.  

One method of modelling risk dependencies which has become very popular recently is the copula [4, 5]. 
The word copula is a Latin noun which means ‘a link, tie or bond’, and was first employed in a mathematical 
or statistical sense by Abe Sklar. Mathematically, a copula is a function which allows us to combine 
univariate distributions to obtain a joint distribution with a particular dependence structure [6]. The copulas 
provide full information on the dependency structure between risks. The concept of copulas is based on 
separating the joint marginal distribution function into a part that describes the dependence structure and 
multiple parts that describe the marginal distribution functions [7-9]. 

The purpose of the paper is to present the bivariate copula potentiality for measuring risk dependencies 
due to occurrence of two natural disasters. The described bivariate copula elements are envisaged to be 
implemented as a part of a Web integrated information system for risk management of natural disasters. 

2. Bivariate Copula Essentials 
The 2-dimensional copula links the bivariate cumulative distribution function to its one-dimensional 

marginals cumulative distribution function and therefore, it carries the dependence structure between these 
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marginals [7]. The bivariate copula (in particular, 2-dimensional copula) is defined by Sklar as a bivariate 
distribution function with margins that are uniformly distributed on ]1,0[ : 

                  ( ) ( ),,, yYxXPyxC ≤≤=  (1) 

where ( )yxC ,  is the copula; ( )TYX ,  with ( )1,0UX ∈  and ( )1,0UY ∈  is a vector of random variables and 
2]1,0[),( ∈Tyx  are realizations of ( )TYX , .  

The 2-dimensional copula ( )yxC ,  is in fact a joint distribution function on 2]1,0[  with standard uniform 
marginals, where X  and Y  are uniformly distributed on ]1,0[ . 

The bivariate copula ( )yxC ,  is a mapping from the unit square 2]1,0[  to the unit interval ]1,0[ . It is 
increasing in each component and satisfies the following conditions [: 

1.                          ( ) yyC =,1  and ( ) xxC =1,  for  1,0 ≤≤ yx ; 

2.                              ( ) ( )yCxC ,000, ==  for  1,0 ≤≤ yx ;               (2) 

3. for any 10 21 ≤≤≤ aa  and 10 21 ≤≤≤ bb ,  ( ) ( ) ( ) ( ) 0,,,, 11211222 ≥+−− baCbaCbaCbaC  

The first and second conditions above imply that the marginal distribution of each component of the 
copula is uniform. The third condition is called the rectangle inequality. It ensures that 

( )2121 , bYbaXaP ≤≤≤≤  is nonnegative.  
A central result to the copula theory is Sklar’s theorem (1959). This theorem states the representation of 

the joint distribution function using a copula. It also shows how a joint distribution can be created via a 
copula [6, 9]. 

Specifically, for the bivariate case, Sklar’s theorem is:  
Given the joint and marginal distribution functions of X  and Y , there exists a unique copula ( ).,.C , 

such that 

( ) ( ))(),(, yFxFCyxF YXXY = . (3) 

Conversely, if ( ).,.C  is a copula, and ( )xFX  and ( )yFY  are marginal (univariate) distribution functions 
of X  and Y , respectively, then ( ))(),( yFxFC YX is a bivariate distribution function with marginal 
distribution functions ( )xFX  and ( )yFY . 

If the inverse functions ( ).1−
XF  and ( ).1−

YF  exist, the copula satisfying (3) is given by: 

( ) ( ))(),(, 11 vFuFFvuC YXXY
−−=  (4) 

The second part of Sklar’s theorem enables to construct a bivariate distribution with given marginals. 
With a well-defined copula satisfying definition (2), ( ))(),( yFxFC YX  establishes a bivariate  
distribution with the known marginals. This can be described as a bottom-up approach in creating a  
bivariate distribution. 

The maximum and minimum of a copula are established by the theorem, called the Fréchet bounds. The 
following bounds is applied to any bivariate copula: 

{ } ( ) { }vuvuCvu ,min,1,0max ≤≤−+ . (5) 

The likelihood function of a bivariate distribution created by a copula can be computed using the 
following theorem: 

Let X  and Y  be two continuous distributions with probability density function ( )xFX  and ( )yFY , 
respectively. If the joint distribution function of X  and Y is given by (3), their joint probability density 
function can be written as  

( ) ( ))(),().().(, yFxFcyfxfyxf YXYXXY = . (6) 
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where 
( )

vu
vuCvuc

∂∂
∂= ,),(

2
. (7) 

is called the copula density.  
From (6)-(7), it can be concluded that the log-likelihood of a bivariate random variable with distribution 

function (3) is 

( )( ) ( ) ( ) ( )( ))(),(log)(log)(log,log yFxFcyfxfyxf YXYXXY ++= . (8) 

which is the log-likelihood of two independent observations of X  and Y , plus a term which measures the 
dependence. 

Therefore it can be derived a bivariate distribution function out of specified marginal distributions and a 
copula that contains information about the dependence structure between the single variables. Also the 
opposite holds: A copula can be determined out of the inverse of the marginal distributions and the bivariate 
distribution function [8]. 

3. Dependence Measures of a Copula  

3.1. Concordance 
Let ( )ii yx ,  and ( )jj yx ,  be two observations of a pair of random variables ( )YX , . 
It is said that ( )ii yx ,  and ( )jj yx ,  are concordant if ( )( ) 0>−− jiji yyxx . That is to say that ( )ii yx ,  and 

( )jj yx , are concordant if ji xx <  and ji yy < , or if ji xx >  and ji yy > . 
Conversely, ( )ii yx ,  and ( )jj yx , are discordant if ( )( ) 0<−− jiji yyxx . 
It is necessary to point that concordance describes a pair of random variables in which, large values tend 

to be associated with large values and small values tend to be associated with small values. 

3.2. Kendall’s Tau 
Kendall’s τ (tau) is a measure of association between two random variables. It is defined in terms of 

concordance.  
Let ( )ii yx , , ni ≤≤1  be a sample of n  observations from ( )YX , , a pair of continuous random variables. 

Let c  denotes the number of concordant pairs of observations ( )ii yx ,  and ( )jj yx ,  with ( ) { }2,...,1, nji ∈ . Let 
d  denotes the number of discordant pairs. Kendall’s τ  is defined as 

2
nC
dc

dc
dc −=

+
−=τ , 

where )!2(!2
!2
−= n

n
nC  is the binomial coefficient equals to the number of pairs.  

Kendall’s τ  measure of a vector ( )YX , of random variables with joint distribution function (3) can be 
defined as the difference between the probabilities of concordance and discordance for two independent pairs 
( )11,YX  and ( )22 ,YX  that is chosen randomly from the sample: 

( )( )( ) ( )( )( )00 21212121 <−−−>−−= YYXXPYYXXPXYτ . 

These probabilities can be evaluated by integrating over the distribution of any pair ( )ii YX , of 
continuous random variables.  

Hence, in terms of copulas, Kendall’s τ  can be expressed as follows:  

( ) ( ) 1,,4
1

0

1

0

−= ∫ ∫ vudCvuCCτ , 

where C  is the bivariate copula associated to ( )YX , .  

3.3. Spearman’s Rho 
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Spearman’s ρ  (rho) is non-parametric correlation coefficient. It is also based on concordance and 
discordance. Let ( )11,YX , ( )22 ,YX  and ( )33 ,YX  be three independent random variables with a common 
joint distribution (3).  

Spearman’s ρ  is defined to be proportional to the probability of concordance minus the probability of 
discordance for the two vectors ( )11,YX  and ( )32 ,YX , that have the same margins but one has distribution 
function (3), while the components of the other are independent: 

( )( )( ) ( )( )( )( )003 31213121 <−−−>−−= YYXXPYYXXPXYρ . 

In terms of the copula C  associated to pair ( )YX , , Spearman’s ρ  can be rewritten as: 

( )( )dudvuvvuCC ∫ ∫ −=
1

0

1

0

,12ρ        or       ( ) 3,12
1

0

1

0

−= ∫ ∫ dudvvuCCρ . 

3.4. Positively Quadrant Dependent  
The random variables X  and Y  with joint distribution function (3) are positively quadrant dependent 

(PQD)  if for all ( )yx,  in R2 

( ) ( ) ( )yYPxXPyYxXP ≤≤≥≤≤ , , 

or equivalently, 

( ) ( ) ( )yYPxXPyYxXP >>≥>> , . 

It can see that X  and Y are positively quadrant dependent implies that the probability that they are 
simultaneously small (respectively, large) is at least as great as it would be if they were independent. 

It can be said that X  and Y are positively quadrant dependent if  

( ) 0)(),(, ≥− yFxFyxF YXXY    for all ∈yx,  R. 

In term of copula, this property can be rewritten as 

( ) uvvuC ≥,    for all [ ]1,0, ∈vu . 

3.5. Tail Dependence 
Tail dependence coefficients are designed to capture the dependence between the marginals in the upper-

right quadrant and in the lower-left quadrant of [ ]21,0 .  
The upper tail dependence parameter Uλ  for a vector ( )YX ,  of random variables with joint distribution 

function (3) is defined as: 

( ) ( )( )tFXtFYPLim XY
t

U >>= −

→ −

1

1
λ . 

It can be shown that 
( )
t

ttCLim
t

U −
−−=

−→ 1
,12

1
λ . 

Analogously, it can be defined the lower tail dependence parameter Lλ  with +→ 0t .  
If 0=Uλ then it can be concluded that the copula C has no upper tail dependence. This means that if it is 

gone far enough into the upper tail of the joint distribution, then extreme events is appeared to occur 
independently. 

The bivariate copula model is described only theoretically. Further research is needed particularly 
regarding its implementation for measuring risk dependencies due to occurrence of two natural disasters. 

4. Conclusions 
The bivariate copula essentials are presented. This copula is proposed to be used for measuring risk 

dependencies due to occurrence of two natural disasters. Several copula dependence measures (concordance, 
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Kendall’s tau, Spearman’s rho, positively quadrant dependent, tail dependence) are considered. A concept 
for implementing the bivariate copula models as a part of a Web integrated information system for risk 
management of natural disasters is outlined.  

The results about the measuring risk dependencies can support the stakeholders to take more informed 
decisions regarding the efficient allocation of the available funding for the improvement of risk management 
with respect to natural disasters. 
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