Manufacturing Service Quality: An Internal Customer Perspective

Gyan Prakash
ABV-Indian Institute of Information Technology and Management Gwalior,
Gwalior, India
e-mail: gyanprakash@gmail.com

Abstract- We conceptualize the role of service quality in manufacturing organizations, present a model that proposes and validates that internal and external service quality initiatives lead to loyalty and satisfaction of employees, which in turn are determinants of organization’s competitive advantage and performance. This study would be of interest to manufacturing industry practitioners interested in internal and external service quality improvements.

Keywords- Service Quality, Manufacturing, Internal Customers

I. INTRODUCTION

Conventionally employee performance has been viewed in terms of productivity improvement rather than understanding the specific needs of employees and serving them. Focal organizations (i.e. manufactures) are beginning to recognize the value of “viewing the next operation as customer”, as a competitive weapon to improve intra-organizational as well as interorganizational service [1]. It has been argued that a high level of internal service quality leads to employee satisfaction and results in higher level of performance, lower waste, lower costs, thereby resulting in improved external service quality [2, 3, 4]. Enhanced level of internal and external service quality include overall organizational quality and competitive performance [1]. This underlines the importance of a customer-driven system that matches internal service with users’ needs [5].

II. METHODOLOGY

A. Survey Design

It emerges from the review of literature that service quality is not universally applied - it is context specific [6, 7]. The various dimensions along with their literature sources which are used for measurement of service quality are depicted in Appendix I. We collected data along with their literature sources and through the specific needs of employees and serving them. Focal organizations (i.e. manufactures) are beginning to recognize the value of “viewing the next operation as customer”, as a competitive weapon to improve intra-organizational as well as interorganizational service [1]. It has been argued that a high level of internal service quality leads to employee satisfaction and results in higher level of performance, lower waste, lower costs, thereby resulting in improved external service quality [2, 3, 4]. Enhanced level of internal and external service quality include overall organizational quality and competitive performance [1]. This underlines the importance of a customer-driven system that matches internal service with users’ needs [5].

B. Model Conceptualization

A model is conceptualized to understand the relationships among latent constructs of internal service quality (service quality offered by focal organization) and external service quality (service quality of offered by employees to each other), satisfaction, loyalty, competitive advantage and organizational performance. Fig.1 depicts structural representation of the model and shows the relationships among aforementioned constructs and their manifest variables. Exogenous latent variable internal service quality (ISQ) is measured through four factors of ISQ scale. Endogenous latent variable external service quality (ESQ) is measured through six factors of ESQ quality scale. Among other endogenous latent variables, satisfaction is measured through three observed variables, competitive advantage is measured through three observed variables and organizational performance is measured through two observed variables.

III. RESULTS

A. Specification of the Model

The structural model [8, 9] as depicted in fig.1 relating the five endogenous variables with one exogenous latent variable internal service quality can be expressed as:

\[\text{ISQ} = \lambda \text{ISQ1} + \lambda \text{ISQ2} + \lambda \text{ISQ3} + \lambda \text{ISQ4} + \epsilon \]

\[\text{ESQ} = \lambda \text{ESQ1} + \lambda \text{ESQ2} + \lambda \text{ESQ3} + \lambda \text{ESQ4} + \lambda \text{ESQ5} + \lambda \text{ESQ6} + \epsilon \]

\[\text{Satisfaction} = \beta \text{ESQ1} + \beta \text{ESQ2} + \beta \text{ESQ3} + \beta \text{ESQ4} + \beta \text{ESQ5} + \beta \text{ESQ6} + \epsilon \]

\[\text{Competitive Advantage} = \beta \text{ISQ1} + \beta \text{ISQ2} + \beta \text{ISQ3} + \beta \text{ISQ4} + \beta \text{ESQ1} + \beta \text{ESQ2} + \beta \text{ESQ3} + \beta \text{ESQ4} + \beta \text{ESQ5} + \beta \text{ESQ6} + \epsilon \]

\[\text{Organizational Performance} = \beta \text{Satisfaction} + \beta \text{ESQ1} + \beta \text{ESQ2} + \beta \text{ESQ3} + \beta \text{ESQ4} + \beta \text{ESQ5} + \beta \text{ESQ6} + \epsilon \]
\[\eta = B \eta + \Gamma \xi + \zeta \]

where

- \(\eta \): is a (5x1) column vector of endogenous latent variables.
- \(\xi \): is a (1x1) column vector of exogenous latent variable internal service quality.
- \(B \): is a (5x5) matrix of structural coefficients amongst the endogenous latent variables.
- \(\Gamma \): is a (5x1) column vector of structural coefficients from exogenous to endogenous latent variables.
- \(\zeta \): is (5x1) column vector of error terms associated with endogenous latent variables.

The hypothesized structure among the six latent variables as depicted in Fig. 1 is represented as:

\[
\begin{bmatrix}
\eta_1 \\
\eta_2 \\
\eta_3 \\
\eta_4 \\
\eta_5 \\
\eta_6
\end{bmatrix} =
\begin{bmatrix}
\beta_{11} \\
\beta_{12} \\
\beta_{13} \\
\beta_{14} \\
\beta_{15} \\
\beta_{16}
\end{bmatrix}
\begin{bmatrix}
\eta \\
\xi \\
\zeta
\end{bmatrix} +
\begin{bmatrix}
\gamma_1 \\
\gamma_2 \\
\gamma_3 \\
\gamma_4 \\
\gamma_5 \\
\gamma_6
\end{bmatrix}
\]

This implies the following five structural equations:

- **External service quality**, \(\eta_1 = \gamma_{11} \xi + \zeta_1 \)
- **Satisfaction**, \(\eta_2 = \beta_{21} \eta_1 + \zeta_2 \)
- **Loyalty**, \(\eta_3 = \beta_{31} \eta_1 + \beta_{32} \eta_2 + \zeta_3 \)
- **Competitive advantage**, \(\eta_4 = \beta_{41} \eta_3 + \zeta_4 \)
- **Organizational performance**, \(\eta_5 = \beta_{51} \eta_3 + \beta_{52} \eta_4 + \zeta_5 \)

The measurement model relating 16 endogenous observed variables to five endogenous latent variables is:

\[
\begin{align*}
\text{Y} &= \Lambda \eta + \varepsilon, \\
\text{Y} &= \begin{bmatrix}
\text{ESQ}_1 \\
\text{ESQ}_2 \\
\text{ESQ}_3 \\
\text{ESQ}_4 \\
\text{ESQ}_5 \\
\text{OP}
\end{bmatrix}, \\
\eta &= \begin{bmatrix}
\text{ISQ}_1 \\
\text{ISQ}_2 \\
\text{ISQ}_3 \\
\text{ISQ}_4 \\
\text{ISQ}_5 \\
\end{bmatrix}, \\
\varepsilon &= \begin{bmatrix}
\text{ESQ}_6 \\
\text{ESQ}_7 \\
\text{ESQ}_8 \\
\text{ESQ}_9 \\
\text{ESQ}_10 \\
\text{OP}
\end{bmatrix}
\end{align*}
\]

This implies the following 16 structural equations representing five endogenous latent constructs.

Measurement of External Service Quality

- **Credibility**, \(\text{ESQ}_1 = \lambda_{11} \eta_1 + \varepsilon_1 \)
- **Friendliness**, \(\text{ESQ}_2 = \lambda_{21} \eta_1 + \varepsilon_2 \)
- **Internal communications**, \(\text{ESQ}_3 = \lambda_{31} \eta_1 + \varepsilon_3 \)
- **Tangibles**, \(\text{ESQ}_4 = \lambda_{41} \eta_1 + \varepsilon_4 \)
- **Professionalism**, \(\text{ESQ}_5 = \lambda_{51} \eta_1 + \varepsilon_5 \)

Knowing the customer, \(\text{ESQ}_6 = \lambda_{61} \eta_1 + \varepsilon_6 \)

Measurement of Satisfaction

- **Reliability**, \(\text{ESQ}_1 = \lambda_{11} \eta_1 + \varepsilon_1 \)
- **Competence**, \(\text{ESQ}_2 = \lambda_{21} \eta_1 + \varepsilon_2 \)
- **Friendliness**, \(\text{ESQ}_3 = \lambda_{31} \eta_1 + \varepsilon_3 \)

Measurement of Loyalty

- **Would continue with employee**, \(\text{L}_1 = \lambda_{13} \eta_1 + \varepsilon_1 \)
- **Recommend employee**, \(\text{L}_2 = \lambda_{14} \eta_1 + \varepsilon_4 \)

331
Given by the following (5x5) matrix:

\[
\begin{bmatrix}
\gamma_{11} & \gamma_{12} & \gamma_{13} & \gamma_{14} & \gamma_{15} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} & \gamma_{24} & \gamma_{25} \\
\gamma_{31} & \gamma_{32} & \gamma_{33} & \gamma_{34} & \gamma_{35} \\
\gamma_{41} & \gamma_{42} & \gamma_{43} & \gamma_{44} & \gamma_{45} \\
\gamma_{51} & \gamma_{52} & \gamma_{53} & \gamma_{54} & \gamma_{55}
\end{bmatrix}
\]

Measurement of competitive advantage

Employees deliver excellent quality,
\[CA_1 = \lambda_{16} \psi_4 + \epsilon_{16} \]
Employees deliver products on time,
\[CA_2 = \lambda_{17} \psi_4 + \epsilon_{17} \]
Employees accommodate changing requirement,
\[CA_3 = \lambda_{18} \psi_4 + \epsilon_{18} \]

Measurement of organizational performance

Employees help in achieving market share,
\[OP_1 = \lambda_{19} \psi_4 + \epsilon_{19} \]
Employees help in achieving profit,
\[OP_2 = \lambda_{20} \psi_4 + \epsilon_{20} \]

In addition to these, \(\Phi_x \) is a variance of exogenous latent variable.
\[\Phi_x = \sigma_x^2 \]
\(\Psi_x \) is a (5x5) variance matrix of error terms associated with the model implied five structural equations.
\[\Psi_x = \begin{bmatrix}
\sigma_{u_1} & \sigma_{u_1} & \sigma_{u_1} & \sigma_{u_1} & \sigma_{u_1} \\
\sigma_{u_1} & \sigma_{u_2} & \sigma_{u_2} & \sigma_{u_2} & \sigma_{u_3} \\
\sigma_{u_1} & \sigma_{u_2} & \sigma_{u_2} & \sigma_{u_3} & \sigma_{u_3} \\
\sigma_{u_1} & \sigma_{u_2} & \sigma_{u_3} & \sigma_{u_3} & \sigma_{u_4} \\
\sigma_{u_1} & \sigma_{u_2} & \sigma_{u_3} & \sigma_{u_3} & \sigma_{u_4}
\end{bmatrix} \]
\(\Theta_\beta \) is a (4x4) variance matrix of measurement errors of the observed exogenous latent variables.
\[\Theta_\beta = \begin{bmatrix}
\sigma_{\beta_1} & \sigma_{\beta_1} & \sigma_{\beta_1} & \sigma_{\beta_1} \\
\sigma_{\beta_1} & \sigma_{\beta_2} & \sigma_{\beta_2} & \sigma_{\beta_2} \\
\sigma_{\beta_1} & \sigma_{\beta_2} & \sigma_{\beta_2} & \sigma_{\beta_3} \\
\sigma_{\beta_1} & \sigma_{\beta_2} & \sigma_{\beta_3} & \sigma_{\beta_3}
\end{bmatrix} \]
\(\Theta_\epsilon \) is a (16x16) variance matrix of measurement errors of the observed endogenous latent variables representing six elements of ESQ, two elements of satisfaction, three elements of loyalty, three elements of competitive advantage and two elements of organizational performance.
\[\Theta_\epsilon = \begin{bmatrix}
\sigma_{\epsilon_1} & \sigma_{\epsilon_1} & \sigma_{\epsilon_1} & \sigma_{\epsilon_1} \\
\sigma_{\epsilon_1} & \sigma_{\epsilon_2} & \sigma_{\epsilon_2} & \sigma_{\epsilon_2} \\
\sigma_{\epsilon_1} & \sigma_{\epsilon_2} & \sigma_{\epsilon_2} & \sigma_{\epsilon_3} \\
\sigma_{\epsilon_1} & \sigma_{\epsilon_2} & \sigma_{\epsilon_3} & \sigma_{\epsilon_3}
\end{bmatrix} \]

The sum of the direct and total indirect effect components is given by following (5x5) matrix:
\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
\beta_{11} & 0 & 0 & 0 & 0 \\
\beta_{12} & \beta_{22} & 0 & 0 & 0 \\
\beta_{13} & \beta_{23} & \beta_{33} & 0 & 0 \\
\beta_{14} & \beta_{24} & \beta_{34} & \beta_{44} & 0
\end{bmatrix}
\]
And the sum of direct and total indirect effect components is given by the following (5x1) matrix:

\[
\begin{bmatrix}
\gamma_{11} \\
\gamma_{12} \\
\gamma_{13} \\
\gamma_{14} \\
\gamma_{15}
\end{bmatrix}
\]

B. Analysis of the Model

In the model there are 52 free parameters and 153 non-redundant variances. Units of measurement are assigned to the latent variables in the model by specifying reference variables. One fixed element in (\(\Lambda_1 \)) in \(\Lambda_\phi \) matrix implies units of measurement for the exogenous latent variable. Similarly \((\Lambda_5, 1, \Lambda_{11}, 2, \Lambda_{13}, 3, \Lambda_{16, 4}, \Lambda_{10, 5}) \) in \(\Lambda_y \) matrix assign units of measurement to the endogenous latent variables.

Moving from conceptual level structural representation to empirical level following hypotheses are tested.

H01: Path coefficient \(\gamma_{11} \) between ISQ and ESQ is positive.

H02a: Path coefficient \(\beta_{21} \) between ESQ and satisfaction is positive.

H02b: Path coefficient \(\beta_{31} \) between ESQ and loyalty is positive.

H03: Path coefficient \(\beta_{32} \) between satisfaction and loyalty is positive.

H04a: Path coefficient \(\beta_{43} \) between loyalty and competitive advantage is positive.

H04b: Path coefficient \(\beta_{53} \) between competitive advantage and organizational performance is positive.

H04c: Path coefficient \(\beta_{54} \) between competitive advantage and organizational performance is positive.

The chi-square statistics for the model is 306.89 with 163 degree of freedom. The ratio of chi-square per degree of freedom is 1.882, which represents a good fit [10, 11]. Given the sensitivity of chi-square statistics for sample size, researchers have proposed a variety of alternative fit indices [12]. Root mean square residual (RMSR) value of 0.026 and root mean square error of approximation (RMSEA) value of 0.069 indicates a reasonable fit. The goodness-of-fit index (GFI) is 0.92 and adjusted goodness-of-fit index (AGFI) is 0.91. Various goodness of fit indices vis-à-vis their recommended values are above the recommended threshold of 0.90 therefore reflecting overall fit of the model. The normed fit index (NFI) value of 0.90 and comparative fit index (CFI) value of 0.92 indicate a reasonable fit. The various path estimates among latent variables of the model are depicted in Table I. From these values it is inferred that model represent an acceptable fit. The positive signs of the parameters representing the paths between the latent variables are in line with hypothesized relationships. The magnitude of the estimated parameters provides information on the strength of the
hypothesized relationships. The parameter values reveal that they are significantly different from zero, which is indicated by t-values greater than \(|.96| \) at 5% level of significance. The squared multiple correlations (R\(^2\)) for the structural equations indicate the amount of variation in each endogenous latent variable that is accounted for by the independent latent variables that impact upon it (i.e., reflect the joint explanatory power of the hypothesized antecedents).

Table I

<table>
<thead>
<tr>
<th>Goodness-of-Fit Measure for Model B</th>
<th>Values</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>1.23</td>
<td>Bentler (1990)</td>
</tr>
<tr>
<td>Root mean square residual (RMSE)</td>
<td>4.95</td>
<td>SYSTER (1989)</td>
</tr>
<tr>
<td>Root mean square error of approximation (RMSEA)</td>
<td>4.038</td>
<td>Browne and Cudeck (1993)</td>
</tr>
<tr>
<td>Goodness of fit index (GFI)</td>
<td>.90</td>
<td>B. Bollen (1989)</td>
</tr>
<tr>
<td>Adjusted goodness of fit index (AGFI)</td>
<td>.90</td>
<td>B. Bollen (1989)</td>
</tr>
<tr>
<td>Squared multiple correlations of manifest variables</td>
<td>.56</td>
<td>Bentler and Bonett (1980)</td>
</tr>
<tr>
<td>Squared multiple correlations of squared multiple correlation (RMSC)</td>
<td>.90</td>
<td>SYSTER (1989)</td>
</tr>
</tbody>
</table>

The values of (R\(^2\)) are in the range of .43 to .74, which can be termed as moderate, and acceptable [13]. The remaining variation might be explained by other variables which are not included in this study. About 57% variation in the satisfaction can be accounted for by the variability in the ISQ. About 43% variation in the satisfaction can be accounted for by the variability in the ESQ. About 73% variation in the loyalty can be accounted for by the variability in the ISQ and satisfaction. About 47% variability in competitive advantage is explained by loyalty and 74% variability in organizational performance is explained by competitive advantage and loyalty. Table III depicts the path estimates of the manifest variables.

The relations between latent and manifest values are significant which is indicated by corresponding t-values. The parameter values reveal that they are significantly different from zero, which is indicated by t-values greater than \(|.96| \) at 5% level of significance. The implementation of the service quality approach may have a direct impact on satisfaction and loyalty of its employees.

Table II

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Parameter</th>
<th>Estimate</th>
<th>t-value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESQ – ISQ</td>
<td></td>
<td>.27</td>
<td>2.25</td>
<td>Supported</td>
</tr>
<tr>
<td>ESQ – Loyalty</td>
<td></td>
<td>.55</td>
<td>5.50</td>
<td>Supported</td>
</tr>
<tr>
<td>ESQ – Satisfaction</td>
<td></td>
<td>.53</td>
<td>5.52</td>
<td>Supported</td>
</tr>
<tr>
<td>Satisfaction – Loyalty</td>
<td></td>
<td>.58</td>
<td>2.81</td>
<td>Supported</td>
</tr>
<tr>
<td>Loyalty – Alternative advantage</td>
<td></td>
<td>.56</td>
<td>5.34</td>
<td>Supported</td>
</tr>
<tr>
<td>Loyalty – Organizational performance</td>
<td></td>
<td>.74</td>
<td>2.70</td>
<td>Supported</td>
</tr>
<tr>
<td>LAMDA-x THETA-y EPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The relations between latent and manifest values are significant which is indicated by corresponding t-values. The parameter values reveal that they are significantly different from zero, which is indicated by t-values greater than \(|.96| \) at 5% level of significance. The squared multiple correlations (R\(^2\)) of the manifest variables are moderate to high (ranging from .12 to .63) indicating that these variables are successful measures of the latent variables in the model. We find that there is a positive relationship between ISQ and ESQ, satisfaction, loyalty, competitive advantage and organizational performance. The directional relationship among these latent variables is in line with structural representation as depicted in fig1. Therefore, we accept the hypotheses H\(_1\), H\(_2\)a, H\(_2\)b, H\(_3\), H\(_4\)a, H\(_4\)b and H\(_4\)c.

Table IV

<table>
<thead>
<tr>
<th>Model Parameter</th>
<th>Estimate</th>
<th>t-value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISQ to Reliability</td>
<td>1</td>
<td>7.29</td>
<td>Supported</td>
</tr>
<tr>
<td>ISQ to Competence</td>
<td>.31</td>
<td>2.54</td>
<td>Supported</td>
</tr>
<tr>
<td>ISQ to Performance</td>
<td>.25</td>
<td>2.42</td>
<td>Supported</td>
</tr>
<tr>
<td>ISQ to Loyalty</td>
<td>.24</td>
<td>3.77</td>
<td>Supported</td>
</tr>
<tr>
<td>ISQ to Competitive advantage</td>
<td>.37</td>
<td>7.37</td>
<td>Supported</td>
</tr>
<tr>
<td>ISQ to Delivery</td>
<td>.48</td>
<td>6.01</td>
<td>Supported</td>
</tr>
<tr>
<td>ISQ to Market Share</td>
<td>.50</td>
<td>9.29</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Table V

<table>
<thead>
<tr>
<th>Effect of</th>
<th>ISQ</th>
<th>ESQ</th>
<th>Satisfaction</th>
<th>Loyalty</th>
<th>Competitive Advantage</th>
<th>Organizational Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISQ to ISQ</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>ISQ to ESQ</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>ISQ to Satisfaction</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>ISQ to Loyalty</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>ISQ to Competitive Advantage</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>ISQ to Organizational Performance</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

DISCUSSION

Analysis of data provides empirical evidence suggesting that model of the study might be a viable representation of the true relationship between observed and latent variables. The direct and indirect effects of these variables on each other provide meaningful results. The service quality approach may indirectly improve an organization’s financial and market performance in the long run. Service quality as offered by the focal organization to its employees has a direct impact on satisfaction and loyalty of its employees. The implementation of the service quality approach may provide the organization a competitive advantage on quality,
delivery and flexibility dimensions. Service quality offered by the focal organization has a direct impact on satisfaction and loyalty of its employees. Employees realize that their ability to provide good service quality to each other results in their enhanced level of satisfaction which inspires their loyalty to each other. There are many ways to obtain loyalty; however, the common denominator is employee friendliness, their competence, credibility and reliability. These findings are in line with those of [14] who conducted their study in a small engineering organization and found that employee loyalty results not only in serving internal customers but also serving external customers and is one of the enablers of competitive advantage. This study finds a link between service quality and loyalty through an intervening variable of satisfaction. This could be true because the three automobile organizations from which data have been collected are situated in National Capital Region (NCR) in North India and these organizations are top organizations in their segment of industry and follow best in class processes and practices. Employees of these organizations value the locational advantage of these organizations, have faith in these organizations and would like to continue to work in these organizations. The results also indicate that higher levels of competitive advantage may lead to improved organizational performance. Based on the effects, service quality may have a direct impact on satisfaction and loyalty than on competitive advantage and organizational performance. This could be true because competitive advantage and organizational performance is usually influenced by several factors and it is difficult to surmise whether any factor such as service quality will dominantly determine the competitive advantage and overall performance of an organization.

V. CONCLUSION

In the manufacturing context, the role of ISQ and its relationship with ESQ, competitive advantage and organizational performance has not been conceptualized previously. Future researchers can take a cue from this research, and empirically test this model at other interfaces in a manufacturing setup to demonstrate the strength and direction of the proposed linkages. This study should be of interest to manufacturing industry practitioners interested in developing internal customer orientation- in a form of ISQ and ESQ. Managers should assess internal and external relationships with employees and take action where necessary. Employees should be developed to identify their primary customers and then assess the level of service and product quality. A single manufacturing setting with three automobile organizations under investigation, a small sample size and snowballing based sampling preclude much of the generalizability of the study findings. Organizations across various industries may differ in organizational structures, roles and responsibilities, business processes and organizational structures, and the conceptualization of service quality may be moulded accordingly.

REFERENCES

Annexure I

<table>
<thead>
<tr>
<th>External Service Quality</th>
<th>Internal Service Quality</th>
<th>Consequence of Service Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competence of employees</td>
<td>Loyalty</td>
<td>Money</td>
</tr>
<tr>
<td>Employees are prompt in informing about progress/feedback</td>
<td>Employees maintain confidentiality in operations</td>
<td>Employees would like to change organization</td>
</tr>
<tr>
<td>Employees possess required skills and knowledge</td>
<td>Employees are trustworthy</td>
<td>Employees would recommend organization</td>
</tr>
<tr>
<td>Employees have willingness to work for the organization</td>
<td>Employees are prompt in action</td>
<td>Employees are satisfied in terms of salary and other benefits that you receive from your organization</td>
</tr>
<tr>
<td>Employees share relevant information among colleagues</td>
<td>Employees accommodate your organization’s changing conditions/service quality.</td>
<td>Employees would continue to work in this organization.</td>
</tr>
</tbody>
</table>

Table 9: Scale for Measurement of Internal, External Service Quality, and Consequence of Organizational Service Quality in Manufacturing Supply Chain. Measurement on five point Likert scale.

334