
Reliability Analysis on Evaluating Process Performance with Sample 
Information 

Hung-Chin Lin + 

Department of Management and Information Technology, Vanung University, Taiwan 

Abstract. Process incapability index, ,ppC  provide measures to determine the quality performance of a process.  In 
fact, ,iaippp CCC +=  ipC  denotes the potential relative expected loss, iaC  is the elative off-target squared.  Most of the 
results obtained regarding the distributional and inferential properties of estimated indices were based on one single 
sample.  In practice, however, process information is often derived from multiple samples rather than from one single 
sample.  In this paper, we first introduce the distributional and inferential properties of the estimators of these indices 
based on X  and S  control chart samples.  We then investigate the performances of the estimators of these indices based 
on the α-level confidence relative error for various combinations of sample size.  The technique provided in this paper 
will be applicable when the process measurements are taken from X  and S  control chart. 

Keywords: process control, process incapability index, non-central chi-square distribution, α-level confidence 
relative error. 

1. Introduction 
Process capability indices, including ,pC  ,aC  pkC  and ,pmC  provide numerical measures to determine whether a 

process is capable of producing items within the established specification limits present by the product engineer or 
manufacturing engineer.  Under the assumption that the process measurement X  arise from a normal distribution with 
a mean μ  and a variance ,2σ  these indices are defined as (Kane, 1986; Chan et al., 1988): 
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where LSL  and USL  are the lower specification limit and upper specification limit, respectively, and T  denotes the 
target value.  Besides, Greenwich and Jahr-Schaffrath (1995) introduced the process incapability index ppC  which 
transformed the index pmC  to provide an uncontaminated separation between information concerning the process 
precision and the process accuracy.  The index ppC  is defined as: 
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where }.3)TUSL( ,3)LSLT(min{d* −−=   If we define the first term 2*)d(σ  as ipC  (is called process 

imprecision index) and the second term 2*)d)T(( −μ  as iaC  (is called process inaccuracy index), then ppC  can be 

rewritten as iaippp CCC +=  to provide an uncontaminated separation between information concerning process 
precision reflects the overall process variability ipC  and process accuracy reflects the departure of the process mean 

from the target value .iaC   In fact, we note that the mathematical relationships ,)(1 2
pmpp CC =  2

aia )1(9 CC −=  and 
2

pip )(1 CC =  can be established.  The advantage of using ppC  over pmC  is that the estimator of the former has better 
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statistical properties than that of the latter, as the former does not involve a reciprocal transformation of the process 
mean and variance.  Lin (2006) recommended some ppC  values as capability requirements in most industry 
applications.  A process is normally called inadequate if ,00.1pp >C  called capable if ,00.156.0 pp ≤< C  called 
marginally capable if ,56.044.0 pp ≤< C  called satisfactory if ,44.036.0 pp ≤< C  called excellent if 

,36.025.0 pp ≤< C  and is called super if .25.0pp ≤C  

    It is known that process capability indices are the functions of process mean and process standard deviation.  Several 
quality and statistics literatures discussed the estimations of process capability indices for assessing process quality 
based on one single sample (Kane, 1986; Chan et al., 1988; Pearn et al., 1992; Pearn et al., 2004 and Parchami and 
Mashinchi, 2007).  In practice, process information about process measurements is often derived from multiple samples 
rather than from one single sample, particularly, when a daily-based production control plan is implemented for 
monitoring process stability.  For process information came from multiple samples, particularly, came from variable 
control chart samples, Li et al. (1990) gave tables of lower confidence bounds on pC  and pkC  where the sample 

range was substituted for the population standard deviation in the definition formula.  Pearn et al. (2005) 
considered the problem of estimating and testing process precision based on X  and R  control chart and X  and S  
control chart samples.  They provided the statistical properties of the natural estimator of pC  and implement the 

hypothesis testing procedure. 
Although X  and R  control chart is widely used in practical applications of process control (calculating sample 

range is easier than calculating sample standard deviation), X  and S  control chart is preferable to its more familiar 
counterparts, X  and R  control chart, since the range method for estimating σ  loses more statistical efficiency than 
that standard deviation method (Montgomery, 2005).  In this paper, we investigate investigate the performance of the 
estimator of ppC  index based on the α-level confidence relative error when using control chart samples.  The results 

obtained for the accuracy of the measured process expected loss which is widely used in the manufacturing industry, 
relative to the control chart samples, is useful to the practitioner in determining the combination of sample size required 
in his application for its estimation good to the desired accuracy. 

2. Estimating Process Incapability 
For the case when the studied characteristic of the process is normally distributed and we have g  subsamples 

where the sample size of the ith subsample is .n   We denote this sequence of independent samples as 
}, , , ,{ 21 inii XXX …  , , ,2 ,1 gi …=  be the characteristic value of the gnN =  samples with mean μ  and standard 

deviation .σ   Assume that the process is in statistical control during the time period that the subsamples are taken.  
Consider the process is monitored using X  and S  control chart.  Then, for each subsample, let nXX g

j iji ∑= =1  and 

)1()(1
2 −∑ −= = nXXS n

j iiji  be the ith subsample mean and the ith subsample standard deviation, respectively.  

gXX g
i i∑= =1  and gRR g

i i∑= =1  are the overall sample mean and the average of sample standard deviations, 
respectively.  It notes that the mean and variance of the statistic σR  are respectively given as 2)(E dR =σ  and 

,)(Var 2
5 gcS =σ  where  }]2)1([)2({)1(24 −ΓΓ−= nnnc  and .1 2

4
2
5 cc −=   Therefore, the values of 4c  and 

2
5c  as determined from .n  

The statistic σS  is distributed approximately as ,νχνc  where νχ  is the chi distribution with ν  degrees of 
freedom and c  is constant, was most accurate (Bissell, 1990).  In fact, we can derive the results of 

,)]2([]2)1([2)(E νννσ Γ+Γ= cS  =)(Var σS .}])2()2)1(([2){( 22 νννν Γ+Γ−c   We then obtain the 

constant c  as a function of 4c  and ,2
5c  .)( 2

4
2
5 cgcc +=   Therefore, the values of c and ν  are determined from g  

and .n   Table 1 displays the corresponding c  and ν  for 30)5(5=g  and .10)1(2=n   In this case, Montgomery 

(2005) recommended estimator of σ  is ,4cS  ( 4cS  is the unbiased estimator of σ ) and the overall sample mean X  
is used as an estimator for the process mean associated with X  and S  control chart samples.  In this paper, we choice 
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the estimator cS  to estimate ,σ  since 2)( cS  is the unbiased estimator of .2σ    The estimator of process incapability 

ppC  index as the following: 
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Table 1  The coefficients of the distribution of σS  with 30)5(5=g  and 10)1(2=n  

n 
g 

5 10 15 
c ν  c ν c ν  

2 0.8422 4.6251 0.8204 9.0066 0.8129 13.3869 
3 0.9101 9.3961 0.8982 18.5459 0.8942 27.6952 
4 0.9376 14.2819 0.9295 28.3168 0.9268 42.3512 
5 0.9523 19.2256 0.9462 38.2037 0.9441 57.1815 
6 0.9614 24.1739 0.9565 48.1000 0.9548 72.0259 
7 0.9677 29.1568 0.9635 58.0656 0.9622 86.9742 
8 0.9721 34.1357 0.9686 68.0233 0.9674 101.9107
9 0.9755 39.1367 0.9724 78.0252 0.9714 116.9137
10 0.9782 44.1327 0.9755 88.0172 0.9745 131.9015

n 
g 

20 25 30 
c ν  c ν c ν  

2 0.8092 17.7670 0.8070 22.1469 0.8055 26.5268 
3 0.8922 36.8443 0.8910 45.9934 0.8902 55.1425 
4 0.9254 56.3856 0.9246 70.4200 0.9240 84.4543 
5 0.9431 76.1592 0.9425 95.1369 0.9421 114.1146
6 0.9540 95.9518 0.9535 119.8776 0.9532 143.8034
7 0.9615 115.8828 0.9611 144.7914 0.9608 173.7000
8 0.9668 135.7981 0.9664 169.6855 0.9662 203.5729
9 0.9709 155.8020 0.9705 194.6904 0.9703 233.5788
10 0.9741 175.7858 0.9738 219.6701 0.9736 263.5544

 

3. The Reliability Analysis 
The α-level confidence relative error is an important and useful criterion for evaluating the reliability of the 

estimator.  For evaluating the reliability of the estimators of process capability indices, Pearn and Lin (2002) noted that 
the α-level confidence relative error which is obtained from the same approach as used for finding the confidence 
interval, provides the practitioners with more direct and easily understood information than the confidence interval 
approach regarding the accuracy of their estimations and suggests a clear range on the true value of the process 
performance measure using the process capability index.  The α-level confidence relative error of ,ˆ

ppC  which is defined 

as }.|ˆ|{max)ˆ(CRE pppppppp CCCC −=
αα   Thus, eC =)ˆ(CRE ppα  presents that with at least α−1  confidence the 

relative deviation (relative error) of ppĈ  will be no greater than .e  

The α-level confidence relative error of the estimator of ppC  index can be defined as 

|},1| |,1{|max|1)ˆ(|max}|ˆ|{max)ˆ(CRE 212pppppppppppp −−=−=−= −αααααα ULCCCCCC  where 2αL  and 

21 α−U  satisfy the probability equation =≤≤ − }ˆPr{ 21pppp2 αα UCCL ,1 α−  which can be obtained as 
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where ζ  is distributed as ).(2
1 λχν +   Therefore, the percentiles 2αL  and 21 α−U  may be obtained by finding the 

corresponding percentiles of the distribution.  Thus, 
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where )(2
 ,1 λχ αν +  is the lower αth percentile of ).(2

1 λχν +  

 

 
(a) 05.0  ,5 == αg                                               (b) 01.0  ,5 == αg  

Fig. 1:  The curves of )ˆ(CRE ppCα  for (a) 05.0  ,5 == αg  (b) 01.0  ,5 == αg  with =n 2, 4, 6, 8, 10 (top to bottom in plot). 
 

Table 2  )}ˆ(max{CRE ppCα  for ,30)5(5=g  ,10)1(2=n  and 01.0=α  

n g 
5 10 15 20 25 30 

2 1.0276* 0.8924 0.8576 0.8324 0.8130 0.797
5 

3 0.8472 0.7642 0.7162 0.6839 0.6601 0.641
6 

4 0.7719 0.6782 0.6272 0.5938 0.5696 0.551
0 

5 0.7179 0.6217 0.5710 0.5382 0.5153 0.496
7 

6 0.6795 0.5839 0.5346 0.5030 0.4805 0.463
3 

7 0.6518 0.5582 0.5107 0.4804 0.4589 0.442
6 

8 0.6318 0.5409 0.4951 0.4662 0.4457 0.430
1 

9 0.6174 0.5293 0.4853 0.4576 0.4380 0.423
2 

10 0.6070 0.5218 0.4795 0.4530 0.4342 0.420
1 

* In this case, the larger value of 0276.1)ˆ(CRE pp =Cα  is obtained at .6081.0ipia =CC  

 

We can analyze the α-level confidence relative error, ).ˆ(CRE ppCα   Since the process parameters μ  and 

σ  are unknown, then the parameter 22
ipia )T( σμ −=CC  is also unknown, which has to be estimated in 

real applications, naturally by substituting μ  and σ  by X  and .cS   Such an approach certainly would 
make this approach less reliable.  To eliminate the need for further estimating the parameter ,ipia CC  we 

examine the behavior of the α-level confidence relative error )ˆ(CRE ppCα  as a function of .ipia CC   Figure 1 

plots the curves of )ˆ(CRE ppCα  versus ,90 ipia ≤≤ CC  for =g 5 and =n 2(2)10, with ,05.0=α  0.01.  From 
Figure 1, except for small values of ,g  n  when ,01.0=α  we find the smaller ,ipia CC  we will obtain larger 

value of ),ˆ(CRE ppCα  )}.ˆ(max{CRE ppCα   That is, the )ˆ(CRE ppCα  is increasing in ipia CC  and reaches its 
minimum at 0ipia =CC  (that is, T=μ ) in all cases, expect for 5=g  and 2=n  when ,01.0=α  the larger 
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value of 0276.1)ˆ(CRE pp =Cα  is obtained at .6081.0ipia =CC   Hence, for practical purposes we may calculate 

the value of )ˆ(CRE ppCα  by setting 0ˆˆ
ipiaipia == CCCC  (in this case, NL 2

2 ,12 ανα χ +=  and 

NU 2
21 ,12 ανα χ −+= ) for given ,g  n  and ,α  without having to further estimate the value .ipia CC   Thus, 

based on such an approach, the decision made for sample size determination is more reliable.  Table 2 
displays )}ˆ(max{CRE ppCα  for =g 5(5)30, ,10)2(2=n  and =α 0.01.  We find under equal total sample size, 

the larger ,n  we can obtain smaller value of ).ˆ(CRE ppCα   If g  or n  is increasing, then the value of  

)ˆ(CRE ppCα  is decreasing.  Table 2 displays the combination of sample size required and the corresponding 

minimal (conservative) reliability of the α-level confidence relative error, ),ˆ(CRE ppCα  for .01.0=α  

4. Conclusions 
Process incapability index provides measures to determine the quality performance of a process.  In fact, 

,iaippp CCC +=  ipC  denotes the process imprecision index, iaC  is the process inaccuracy index.  In real situations 
where the actual values of ,ipC  iaC  and ppC  are unknown one may estimate it by its corresponding process samples.  

Most of the results obtained regarding the distributional and inferential properties of estimated process capability index 
were based on one single sample.  In practice, however, process information is often derived from multiple samples 
rather than from one single sample.  Particularly, process measurements come from control chart samples, since the 
importance of using control charts first to determine if a process is in control, before estimating process capability.  In 
this paper, we investigated the performance of the estimator of ppC  based on the α-level confidence relative error for 

various combinations of sample size.  The results obtained for the accuracy of the estimated process incapability index 
which is widely used in the manufacturing industry, relative to the control chart samples, is useful to the practitioner in 
determining the sample size required in his application for its estimation good to the desired accuracy. 
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